
Valuing the benefits of water and sanitation interventions: An economic perspective

Dr. David Fuente

8th Annual Water and Sanitation Innovations for the Arctic Workshop
Anchorage, AK
January 19, 2018

Economists' proposal:

Use changes in "human well-being" as a criterion to judge the wisdom (advisability) of adopting a policy, project, or regulation.

Can "human well-being" be defined and measured?

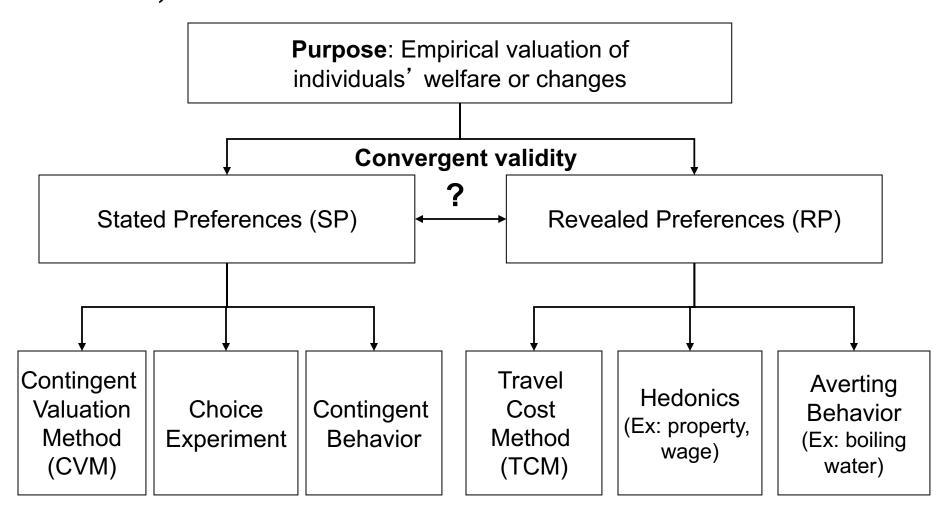
Changes in human well-being as a criterion for policy analysis?

	Possible to measure human well-being	Not possible to measure human well-being	
Change in human well-being is an important criterion for judging the wisdom of a policy	Case 1	Case 2	
Change in human well-being is NOT an important criterion for judging the wisdom of a policy	Case 3	Case 4	

Economic conception of changes in well-being

Willingness to Pay (WTP)

Status quo → status quo + quality of life improving policy


Willingness to Accept (WTA)

Status quo -> status quo + quality of life decreasing policy

Common benefits associated with water and sanitation interventions

- Health related benefits
 - Morbidity
 - Mortality
- Non-health related benefits
 - Reduced coping costs (e.g., collection, storage, and treatment of water)
 - Aesthetic improvements (e.g., improved social standing, convenience, reduced anxiety, etc.)
 - Other (e.g., school attendance, economic growth, etc.)

A Taxonomy of Nonmarket Valuation Methods (the toolkit)

Health-related benefits: Morbidity reduction Cost of Illness (COI)

- Private benefits → Private COI
 - Pain and suffering (acute and chronic)
 - Privately-borne cost of treatment and diagnosis (out-of-pocket costs)
 - Lost time/productivity of individual and caregivers (opportunity costs)
- Public benefits → Public COI
 - Wages
 - Medication
 - Facilities
 - Travel

Health-related benefits: Mortality reduction Value of mortality risk reduction

(Non-economic) Approaches

- 1. Gross Output Method: Present value of expected future labor earnings
- 2. <u>Net Output Method</u>: Present value of expected future labor earnings minus expenditure on personal consumption
- 3. Life Insurance Method: Value for which person insures their life
- Political Derivation Method: Impute the value of life from past political decisions that involve saving lives

These approaches do not reflect individual preferences

Health-related benefits: Mortality reduction Value of mortality risk reduction

Economists' approach:

"How much do individuals require as ex ante compensation to voluntarily accept a small additional risk of death?" (WTA)

OR

"How much would individuals be willing to pay for a small reduction mortality risk?" (WTP)

Health-related benefits: Mortality reduction Value of mortality risk reduction

- Approaches
 - Stated preference (ask people)
 - Revealed preference (observe their behavior)
- May vary with...
 - Age
 - Income
 - Baseline risk
 - Impact on others
 - Nature of mortality risk (cancer, occupational risk, car crash, natural disaster)

What's an African Life Worth?

What crocodile-infested rivers and hovercrafts tell us about how people value their own safety.

BY ALICIA P.Q. WITTMEYER | DECEMBER 9, 2013, 5:18 PM

 Table 1. Summary of international studies reviewed

Table 1. Summary of International studies re	evieweu		Per		
Study	Туре	Country	Capita GDP	Reported VSL	
Developing Countries	Турс	country	<u>upi</u>	VOL	
Jeuland et al. (2008)	CV/SP	Beira, Mozambique	504	11,700	
Kremer et al. (2009)	RP	Kenya (Rural)	892	500	
Maskery et al. (2008)	CV/SP	Bangladesh (Rural)	896	12,075	
Simon, Cropper, Alberini and Arora (1999)	WR	India	2,084	263,575	
Shanmugam (2000)	WR	India (Chennai)	2,084	910,000	
Shanmugam (2001)	WR	India (Chennai)	2,084	1,885,000	
Bhattacharya, Alberini, and Cropper					
(2007)	CV/SP	India (Delhi)	2,084	9,068	
Shanmugam (1997)	WR	India (Chennai)	2,084	877,500	
Guo and Hammitt (2009)*	WR	China (Urban)	4,547	52,650	
Hammitt and Thou (2006)	CW/CD	China (Urban &	4547	70 162	
Hammitt and Zhou (2006)	CV/SP	Rural)	4,547	78,163	
Wang and Mullahy (2006) Vassanandumrongdee and Matsuoko	CV/SP	China (Chonging)	4,547	28,470	
(2005)	CV/SP	Thailand (Bangkok)	5,558	1,072,500	
Vassanandumrongdee and Matsuoko	•		,		
(2005)	CV/SP	Thailand (Bangkok)	5,558	1,105,000	
Gibson et al. (2007)	CV/SP	Thailand (Rural)	5,558	182,000	
Melhuish, Ross, Goodge et al (2005)*	CV/SP	Malaysia	8,154	397,800	
Hammitt and Ibarraran (2006)	WR	Mexico City	8,857	209,950	
Ortuaz, Cifuentes, Williams (2000)*	CV/SP	Chile (Santiago)	9,329	2,067,000	
Ortuaz, Cifuentes, Williams (2000)*	CV/SP	Chile (Santiago)	9,329	421,850	
Giergiczny (2008)*	WR	Poland	10,644	1,202,500	
Kim and Fishback (1999)*	WR	South Korea	17,098	650,000	
Liu, Hammitt, Liu (1997)	WR	Taiwan	20,811	422,500	
Liu and Hammitt (1999)*	WR	Taiwan	20,811	455,000	
Sibert and Wei (1998)*	WR	Hong Kong	25,600	1,105,000	
Industrialized Countries					
Meng and Smith (1999)**	WR	Canada	26,505	3,380,000	
Baranzini and Ferro Luzzi (2001)**	WR	Switzerland	27,571	4,842,500	
Lott and Manning (2000) **	WR	US	30,225	2,346,570	
Dreyfus and Viscusi (1995)**	RP	<mark>US</mark>	30,225	3,598,075	
Blomquist et al (1996) **	RP	<mark>US</mark>	30,225	4,536,703	
Gayer et al (2000) **	RP	<mark>US</mark>	30,225	3,637,184	
Jenkins et al (2001) **	RP	<mark>US</mark>	30,225	1,916,366	

^{*}Not included in references for this paper. Cited in Hammitt and Robinson (2011).
**Not included in references for this paper. Cited in Viscusi and Aldy (2003).

Common benefits associated with water and sanitation interventions

- Health related benefits
 - Morbidity
 - Mortality
- Non-health related benefits
 - Reduced coping costs (e.g., collection, storage, and treatment of water)
 - Aesthetic improvements (e.g., improved social standing, convenience, reduced anxiety, etc.)
 - School attendance

Non-health related benefits: Coping costs

Direct costs (out-of-pocket expenditure)

 Alternative sources (bottled water, vended water, self-supply, etc.)

Non-health related benefits: Coping costs

Direct costs (out-of-pocket expenditure)

- Alternative sources (bottled water, vended water, self-supply, etc.)
- Treatment (filtration, chlorination, boiling)

Non-health related benefits: Coping costs

Direct costs (out-of-pocket expenditure)

- Alternative sources (bottled water, vended water, self-supply, etc.)
- Treatment (filtration, chlorination, boiling)
- Storage (capital costs and maintenance)

Indirect costs

Collection time (travel and waiting) ->
 Opportunity cost of time

Non-health related benefits:

Valuing time savings

<u>Step 1</u>: Estimate time savings from an intervention $(T_{savings})$

- Number of trips
- Transport mode
- Queue time

Non-health related benefits:

Valuing time savings

<u>Step 1</u>: Estimate time savings from an intervention $(T_{savings})$

<u>Step 2</u>: Estimate the opportunity cost of time (P_{time})

- Travel choices/behavior
- Water source choice
- Challenges
 - Multi-use trips
 - Heterogeneity (e.g., income, who collects, etc.)

Non-health related benefits: Valuing time savings

Step 1: Estimate time savings from an intervention (T_{savings})

<u>Step 2</u>: Estimate the opportunity cost of time (P_{time})

- Travel choices
- Water source choice
- Challenges
 - Multi-use trips
 - Heterogeneity (e.g., income, who collects, etc.)

Step 3: Multiply and aggregate

Common benefits associated with water and sanitation interventions

- Health related benefits
 - Morbidity
 - Mortality
- Non-health related benefits
 - Reduced coping costs (e.g., collection, storage, and treatment of water)
 - Aesthetic improvements (e.g., improved social standing, convenience, reduced anxiety, etc.)
 - School attendance

Challenges and limitations

- Perceived benefits (private)
- Externalities (social)
- Financial vs. economic analysis
- Willingness to pay is bounded by ability to pay

Thank you

Dr. David Fuente
School of Earth, Ocean & Environment
University of South Carolina

fuente@seoe.sc.edu