





### **ANTHC Rural Energy – Washeterias** Briefing for the Arctic Research Commission January 2014

Daniel Reitz, P.E.

Rural Energy Program Manager

#### The Rural Conundrum

"The poorest Alaskan households spend up to 47% of their income on energy, more than five times their urban neighbors." - Commonwealth North 2012

#### **ANTHC Energy Program Overview**



- Initial Survey 2011
- Energy Audits
- Energy Efficiency Upgrades
- Heat Recovery Projects
- In home TED meters
- Biomass heating
- Wind Energy
- Education

### **Energy Survey of 2011**

- Circulating arctic water and vacuum sewer
- Circulating arctic water and conventional gravity sewer
- Conventional water distribution and gravity sewer
- Washeteria/watering point with honeybucket sewage disposal

Energy needs comprise 30 to 60 percent of a community's water system operating costs and up to 30 percent of a community's total energy.

### DIVISION OF ENVIRONMENTAL HEALTH & ENGINEERING



### DIVISION OF ENVIRONMENTAL HEALTH & ENGINEERING



### **DIVISION OF ENVIRONMENTAL**

#### **Typical WTP Expenses- ARUC 2013**



### **Energy Audit Overview**

- What is a water plant and are they all the same?
- How important are energy costs in keeping rates down?
- How much energy do water plants use?
- How much can be saved?
- What can be done short term to reduce energy costs?
- What can be done long term to reduce energy costs?
- Is renewable energy a good idea in water plants?

### DIVISION OF ENVIRONMENTAL HEALTH & ENGINEERING

#### **Total Sanitation System Energy Cost by Energy Component**



### **Audit Finding - Averages**

(40 Villages)

| Average by Facility<br>Type   | Potential Fuel<br>Savings (gals) | Potential<br>Electrical<br>Savings<br>(kwh) | Potential<br>Cost<br>Savings | Retrofit<br>Costs | CO2<br>SAVINGS<br>(lbs/yr) | SIMPLE<br>PAYBACK<br>(Years) |
|-------------------------------|----------------------------------|---------------------------------------------|------------------------------|-------------------|----------------------------|------------------------------|
| Water and Sewer<br>Facilities | 1,890                            | 24,400                                      | \$ 14,575                    | \$ 65,447         | 61,098                     | 4.5                          |
| Health Clinics                | 417                              | 4,974                                       | \$ 3,544                     | \$ 11,582         | 18,015                     | 3.2                          |
| Tribal Buildings              | 387                              | 2,047                                       | \$ 2,999                     | \$ 12,032         | 11,826                     | 4.0                          |
| Average Per Village           | 2,694                            | 31,421                                      | \$ 21,118                    | \$ 89,061         | 90,039                     | 4.2                          |

#### Washeteria Fuel Oil Usage Profile (Gallons)



#### Washeteria Electrical Usage Profile (Kwh)



#### **Washeteria Energy Cost Profile (Annual Dollars)**



#### Retrofit Type Description and Examples

| Retrofit Types             | Description                                                                                                                                                                            | Example                                                                      |  |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|
|                            | Simple projects that require little time or money to acomplish. Local village fully capable of doing.                                                                                  | ·                                                                            |  |  |
| Operations and Maintenance | Projects that may require a specialized person from the village, but the village has most necessary supplies. May need some funding.                                                   | Clean Boilers, Reduce air transfer, Clean and adjust floats in lift station  |  |  |
| Local Retrofit             | Projects that may require significant funding, but local village has all necessary skills and capabilities. Village may or may not have supplies for the job.                          | New Thermostats, New lights, Replace aquastats, insulation additions         |  |  |
| Minor Project              | Larger scale projects that require outside assistant. Project may require technicians to assist and/or very significant funding.                                                       | Controls retrofitting, new boiler installation, resizing and replacing pumps |  |  |
|                            | Largest scale projects that will require significant outside assistance. Projects may potentially need an Engineer, Superintendant, or other Professionals. Technical experts and very | Waste Heat projects, Outfall Replacement, Excess                             |  |  |
| Major Project              | significant funding required.                                                                                                                                                          | Wind to Heat                                                                 |  |  |

#### **Operation and Maintenance Pays!**



# Cost of Implementing Energy Conservation Measures in Washeterias Audited



## Typical Minor Projects and Operational Issues Identified in the Audits of Washeterias

- Boilers need to be cleaned and tuned
- Boilers settings are too high and not properly staged
- Boilers are operated all summer when they are not needed
- Boiler optimization controls are bypassed
- Building temperature is not set back during unoccupied hours
- Water storage tank temperature set higher than needed
- Water storage tank heat add controls not operational
- Electric heat trace used all winter (or all year) when designed for emergency thaw only

#### **Longer Term Energy Upgrades**

- Improve the building shell by adding insulation and replacing windows
- Replace old and tired boilers with new appropriately sized high efficiency cold start boilers
- Replace pumps with new high efficiency pumps and variable speed drives
- Repair and or replace process pipe insulation
- Add remote monitoring to identify energy waste

- Re-commission the building and all associated processes
- Upgrade both interior and exterior lighting
- Improved operator training
- Evaluate the cost effectiveness of all types of renewable energy including:
  - Heat Recovery
  - Biomass
  - Wind to Heat
  - Wind
  - Solar

### Barriers to Energy Efficiency

- Lack of Awareness Communication between operations and management
- Aversion to Risk (sometimes real)
- Change May Imply Problem with the Status Quo threatening
- Subsidies Unintended consequences
- Poorly Financed Operations
- Age Inherent to the time period of development

#### For More Information:

Daniel Reitz, PE
Rural Energy Program Manager
ANTHC, DEHE
907-729-3509
dreitz@anthc.org