Kake Heat Pump Rate Analysis

Arctic Sustainable Energy Research Conference April 21, 2021

Outline

- Context: Heat Pumps (HP) as potential beneficial load growth
- Current Kake situation:
 - Load
 - Generation
 - Costs and complexities
- This study
- Caveats / future research

Declining load = higher rates

Utility costs		Last year	This year
Fixed cost (distn & admin)	\$/yr	200,000	200,000
variable cost (fuel + var O&M)	\$/kWh	0.30	0.30
Electricity sales	kWh/yr	1,000,000	→ 900,000
Total cost	\$/yr	500,000	470,000
Average cost = required rate	\$/kWh	0.50	→ 0.52
Average fixed cost	\$/kWh	0.20	0.22

Declining load = higher rates

Utility costs		Last year	This year
Fixed cost (distn & admin)	\$/yr	200,000	200,000
variable cost (fuel + var O&M)	\$/kWh	0.30	0.30
Electricity sales	kWh/yr	1,000,000	→ 900,000
Total cost	\$/yr	500,000	470,000
Average cost = required rate	\$/kWh	0.50	→ 0.52
Average fixed cost	\$/kWh	0.20	0.22

Opportunity: Increasing load = lower average cost...

Uti	lity costs		non-HP	HP load	with HP
	Fixed cost (distn & admin)	\$/yr	200,000	0	200,000
)	variable cost (fuel + var O&M)	\$/kWh	0.30	0.30	
			_		
	Electricity sales	kWh/yr	1,000,000	200,000	1,200,000
	Total cost	\$/yr	500,000	60,000	560,000
1	Average cost	\$/kWh	0.50		0.47
	Average fixed cost	\$/kWh	0.20		0.17

....then what?

Lower uniform rates.....?

New uniform rate		non-HP	HP load	with HP
Rate	\$/kWh	0.47	0.47	-
Utility revenue	\$/yr	466,667	93,333	560,000
Utility total cost	\$/yr			560,000
Utility margin	\$/yr			0

....might be too high for potential heat pump users

Special rate for HP use...?

Breakeven rate for HP use		non-HP	HP load	with HP
Rate	\$/kWh	0.50	0.30	
Utility revenue	\$/yr	500,000	60,000	560,000
Utility total cost	\$/yr			560,000
Utility margin	\$/yr			0

Utility breaks even, and non-HP customers not worse off.

Lowest possible HP rate = marginal cost of serving HP load.

Win-win rates

Win-win combinations		non-HP	HP load	with HP
Rate	\$/kWh	0.49	0.35	
Utility revenue	\$/yr	490,000	70,000	560,000
Utility total cost	\$/yr			560,000
Utility margin	\$/yr			0

Non-HP customers pay lower rates;

HP rate must be low enough to reduce HP owners' heating bills.

Serving new load with *excess** zero-fuel hydro helps even more

	non-HP	HP load	with HP
\$/yr	200,000	0	200,000
\$/kWh	0.30	0.00	
kWh/yr	1,000,000	200,000	1,200,000
\$/yr	500,000	0	500,000
\$/kWh	0.50	\longrightarrow	0.42
\$/kWh	0.20		0.17
\$/kWh	0.30		0.25
	\$/kWh kWh/yr \$/yr \$/kWh \$/kWh	\$/yr 200,000 \$/kWh 0.30 kWh/yr 1,000,000 \$/yr 500,000 \$/kWh 0.50	\$/yr 200,000 0 \$/kWh 0.30 0.00 kWh/yr 1,000,000 200,000 \$/yr 500,000 0 \$/kWh 0.50

^{*}hydro available after serving existing non-HP load

Many win-win rate combinations with excess* hydro

Win-win combinations		non-HP	HP load	with HP
Rate	\$/kWh	0.46	0.20	
Utility revenue	\$/yr	460,000	40,000	500,000
Utility total cost	\$/yr			500,000
Utility margin	\$/yr			0
Win-win combinations		non-HP	HP load	with HP
Rate	\$/kWh	0.48	0.10	
Utility revenue	\$/yr	480,000	20,000	500,000
Utility total cost	\$/yr			500,000
Utility margin	\$/yr			0

^{*}hydro used for HP only after serving existing non-HP load

Modeled Kake electric load

Based on 2019-2020 data - Peak load 465 kW in Jan 2020

Kake generation

- 4 x 450 kW diesel generators
 - Effective operational capacity of 720 kW

Plus:

500 kW Hydro (Gunnuk Creek) - new!

Kake cost situation

Marginal cost of diesel =

17.7 cents per kWh (fuel)

- + 10.6 cents per kWh (nonfuel O&M)
- = 28.3 cents per kWh total

This is the minimum rate for any new load,

-- absent further complexities

Further complexities:

- Some HP load can be served by excess hydro
- Some HP load will pay full/regular non-HP rate
- Hence, an HP incentive rate for use greater than 500 kWh per month can be less than full marginal cost of diesel
- Also IPEC has postage stamp rates for hydro and non-hydro communities!

Housing authority installing HP already...

- -better indoor air quality, less maintenance
- ~doubles winter household electricity load
- ~max coincident load?? (vs. existing generation limits)

Study

ACEP Technical Report

Kake Heat Pump Rate Analysis for Inside Passage Electric Cooperative

> Shivani Mathur, Steve Colt and Michelle Wilber February 2021

- -Break even rate for utility: ~8 to 10 cents/kWh + COPA
- = (approx) 23 25 cents/ kWh
- -varied hydroelectric potential, fuel price and marginal non-fuel cost of power from diesel generation in sensitivity analysis

-Monte Carlo simulations on above parameters

https://acep.uaf.edu/projects-(collection)/bee.aspx

Utility NPV - HP incentive rate = \$0.1200/kWh

Monte Carlo Simulations

Description	Utility NPV
Standard deviation	442,085
Average	789,131
Minimum	(818,418)
Maximum	2,276,064
Median	795,044
Probability of positive NPV	96%

Utility NPV (\$)

Customer NPV - HP incentive rate = \$0.1200/kWh

Monte Carlo Simulations

Description	Customer NPV
Standard deviation	333
Average	834
Minimum	(246)
Maximum	1,991
Median	839
Probability of positive NPV	99%

Caveats and Future work

- Split costs between HA and resident not accounted for (install/electricity)
- More experience will nail down some parameters
 - true costs of HP installation/maintenance
 - energy usage of HPs (back up heating?)
 - coincident peak load of HPs?
 - hydro availability and variability
- What about other communities?
 - climate/costs/generation sources

beyond here is junk DNA

Stuff I am not sure what to do with, yet, but not worth discarding,

